000 03114cam a22004937i 4500
001 17884899
003 OSt
005 20210930200147.0
008 130913s2014 nyua b 001 0 eng c
010 _a 2013950378
020 _a9781461486862 (hbk)
020 _a1461486866 (hbk)
020 _z1461486874 (ebk.)
020 _z9781461486879 (ebk.)
035 _a(OCoLC)ocn859186504
040 _aYDXCP
_beng
_cYDXCP
_erda
_dBTCTA
_dCDX
_dDGU
_dIXA
_dMNW
_dDLC
042 _apcc
050 0 0 _aQA279.5
_b.M358 2014
100 1 _aMarin, Jean-Michel,
_eauthor.
245 1 0 _aBayesian essentials with R /
_cJean-Michel Marin, Christian P. Robert.
250 _aSecond edition.
264 1 _aNew York :
_bSpringer,
_c[2014]
300 _axiv, 296 pages :
_billustrations (some color) ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aSpringer Texts in Statistics,
_x1431-875X
504 _aIncludes bibliographical references (pages 287-290) and index.
505 0 _aUser's manual -- Normal models -- Regression and variable selection -- Generalized linear models -- Capture-recapture experiments -- Mixture models -- Time series -- Image analysis.
520 _aThis Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. The stakes are high and the reader determines the outcome. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable.
530 _aAlso available online.
650 0 _aBayesian statistical decision theory.
650 0 _aR (Computer program language)
700 1 _aRobert, Christian P.,
_d1961-,
_eauthor.
776 0 8 _iAvailable online as:
_aMarin, Jean-Michel.
_tBayesian essentials with R.
_bSecond edition.
_dNew York : Springer, 2014
_z9781461486879
_w(OCoLC)864180801
830 0 _aSpringer texts in statistics.
856 4 2 _3Contributor biographical information
_uhttp://www.loc.gov/catdir/enhancements/fy1410/2013950378-b.html
856 4 1 _3Table of contents only
_uhttp://www.loc.gov/catdir/enhancements/fy1410/2013950378-t.html
856 4 2 _3Publisher description
_uhttp://www.loc.gov/catdir/enhancements/fy1410/2013950378-d.html
906 _a7
_bcbc
_cpccadap
_d2
_encip
_f20
_gy-gencatlg
942 _2lcc
_cBK
999 _c6295
_d6295